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Abstract. A continuous nearest neighbor (CNN) query retrieves the nearest neighbor of every point 

on a line segment and indicates its valid segments. Zheng et al. have proposed a Hilbert-curve index 

for the CNN query. This method contains two phases, searching candidates in the approximate search 

range, and filtering the candidates to get the final answer. However, it may determine a wide search 

range in the first phase based on this method, resulting in the decrease of the accuracy and the increase 

of the processing time. Therefore, in this paper, to avoid this disadvantage, we propose a forward 

moving method to efficiently support the CNN queries. The proposed method locally expands the 

search range along the query line segment to find the neighbors. Experimental results show that our 

method outperforms Zheng et al.’s method in terms of the accuracy and the processing time. 

Introduction 

A spatial database is designed to optimize the ability of manipulating the spatial property for 

performing queries on spatial data. These spatial objects are made up of points, lines, regions, 

rectangles, surfaces, volumes, and even data of higher dimension. This paper considers the spatial 

objects as points. The physical organization of files can be supplemented with indices. A spatial 

indexing method organizes space and objects in the database to deal with proximity queries [4]. 

Queries on spatial data commonly concern a certain range or area, for example queries related to 

intersections, containment and nearest neighbors. With the proliferation of wireless communications 

and the rapid advances in geographic information systems, a very common spatial query is the nearest 

neighbor (NN) query which retrieves an object whose representative position is closest to the query 

position [1]. 

In real-life applications, people may want to know where those gas stations are along the highway 

from the start position to the destination. Such a query is called a continuous nearest neighbor (CNN) 

query. Due to the mobility of the user, the result may be changed immediately as the user is moving. 

Therefore, CNN queries retrieve the nearest neighbor of every position from the beginning to the 

destination [3]. While a route may not be a line segment, it can be decomposed into multiple line 

segments [7]. For answering a CNN query, issuing a nearest neighbor query at every point along the 

query line segment will incur significant overhead. Therefore, it is feasible that the answer results of a 

CNN query can contain the objects and their corresponding valid segments.  

In [6], Tao et al. proposed an R-tree method to process CNN queries. This method traverses the 

nodes in the R-tree to find nearest neighbors based on a few heuristics. In [7], Zheng et al. adapted 

Tao et al.’s method for processing CNN queries in mobile environments by changing the traversal 

order of branches in the R-tree. In [7], the authors also proposed a Hilbert-curve based method for 

processing CNN queries. Their experimental results have shown that the Hilbert-curve based method 

has a better performance on tuning time than the R-tree based method on the uniformly distributed 

data. Note that the tuning time is the amount of time spent by a mobile client listening to the channel, 

which roughly corresponds to the processing time in the disk-based systems [5]. In addition, for the 

disk-based systems, Chen and Chang [2] pointed out that R-tree based methods access unnecessary 

nodes for processing NN queries, resulting in the increase of the processing time. Moreover, they have 

shown that Hilbert-curve based methods have a better performance for processing NN queries than 

R-tree based methods.  
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From the above observations, in this paper, we consider the Hilbert-curve based structure for 

processing CNN queries in the disk-based system. Zheng et al.'s Hilbert-curve based method contains 

two phases. In the first phase, it finds the nearest neighbors of the start point and the end point, 

respectively, and then these two nearest neighbor objects are used to determine the search range to 

find all candidate objects once. In the second phase, it uses a few heuristics to filter the candidate 

objects for the final answer. Although this method is proposed for the mobile environment, it can be 

applied to the disk-based system directly. However, Zheng et al.'s method may determine a wide 

search range to find the candidate objects in the first phase; that means it may check some unnecessary 

data blocks, resulting in the increase of the processing time. 

Therefore, in this paper, we propose a forward moving method, FM, based on the local expansion 

for the CNN queries to avoid those disadvantages in the first phase of Zheng et al.’s method. To 

preserve the spatial locality, the spatial objects are organized based on the Hilbert curve, in which the 

surrounding blocks to the query point can be efficiently found by using the method in [2]. Due to the 

local expansion of the search range, our proposed method avoids checking unnecessary data blocks 

and provides a higher accuracy to get the final answer than Zheng et al.’s method. Experimental 

results show that the proposed FM outperforms Zheng et al.’s method. 

Background 

This section describes the underlying data structure, the Hilbert curve, to store spatial objects in 
our proposed method. There is no total ordering of spatial proximity among spatial data in the 
multi-dimensional space. Space-filling curves are used to preserve spatial proximity, such as the RGB 
curve, the Peano curve, and the Hilbert curve. A space-filling curve is a continuous path which passes 
through every point in the two-dimensional space once to form a one-one correspondence between the 
coordinates of the points and the one-dimensional sequence numbers of the points on the curve. Since 
the goal of the space-filling curves is to preserve spatial proximity, they can handle nearest neighbor 
queries [1]. Among the existing space-filling curves, the Hilbert curve has the best clustering property. 
The clustering means that after ordering, spatial objects which are close to each other in the 
two-dimensional space are still close to each other in the one-dimensional space [1]. Therefore, we 
store spatial objects in the disk according to their sequence of the Hilbert curve, and construct an 
index to record which data blocks contain objects. Moreover, we use the neighbor finding method in 
[2] to find the surrounding neighbors. Given a two-dimensional space of size , where N = 2

n
, n > 0, the 

Hilbert curve of order n recursively divides the space into four equal-sized blocks and gives each 
block a sequence number from 0 to (N

2
 –1) [1]. Fig. 1 shows the Hilbert curve of order n = 3. 

The Proposed Method 

Our proposed forward moving method (FM) based on the local expansion is designed to improve 
the first phase in Zheng et al.'s method. In the first phase, we determine a search range to obtain the 
blocks on the Hilbert curve. In the second phase, we use heuristics mentioned in Zheng et al.'s method 
to filter the candidate objects for the final answer. 

In our proposed method, the first phase for processing a CNN query is processed by procedure 
FindRange shown in Fig. 2 by taking start point s and end point e as its parameters. In procedure 
FindRange, procedure FindNNBlocks uses Chen and Chang's method [2] to find the nearest neighbor 
blocks having data objects inside. From lines 2-3, the nearest neighbors of start point s and end point 
e are found out, respectively. Next, procedure FindRoute finds out the blocks that are passed through 
the query line by using the coordinates of start point s and end point e. Moreover, these blocks are put 
into queue RQueue, except the start block, to be further processed to expand the search range. 

Finally, procedure LocalExpansion incrementally moves forward one block along the query line 
segment, which is stored in RQueue, and locally spreads the search range to find the candidate objects. 
In procedure LocalExpansion, at first, start block s and one block dequeued from RQueue are taken as 
the local start point and the local end point, respectively, to spread the search range. Then, this local 
end point is taken as the local start point for the next step, and one block dequeued from RQueue is 
taken as the local end point. These local expansions are repeatedly processed until RQueue is empty. 
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There are eight kinds of moving directions for the local expansion: north (N), south(S), east (E), 

west (W), northeast (NE), northwest (NW), southeast (SE), and southwest (SW). We classify them 

into two classes: (a) N, S, E, and W; (b) NE, NW, SE, and SW. Each class has the similar local 

expansion. For the first class, Fig. 3-(a) and Fig. 3-(b) show the local expansions of the N moving 

direction for the local start point s’ and local end point e’ with SRadius=1 and SRadius=2, respectively. 

SRadius indicates the distance away from the route in terms of blocks. In these figures, the search 

range are the east and west blocks of local start point s’ and local end point e’ and the block containing 

e’. The other three moving directions in the first class have the similar processing behavior with the 

different spreading search range. The local expansion is repeatedly processed with increasing the 

value of SRadius by one at a time, until the blocks of the current search range have data or the spread 

with SRadius is out of boundary of the search rectangle. 

s'

e'

  

s'

e'

 

s'

e'

 
(a) (b) (c) (d) 

Fig. 3. The local expansions: (a) the N direction with SRadius=1; (b) the N direction with SRadius=2; 

(c) the NE moving direction with SRadius=1; (d) the NE direction with SRadius=2. 

For the second class, Fig. 3-(c) and Fig. 3-(d) show the local expansions of the NE moving 

direction with SRadius=1 and SRadius=2, respectively. In these figures, the search range are the 

northwest and southeast blocks of s’, the west, northwest, south, southeast blocks of e’ and the block 

containing e’. The other three moving directions in the second class have the similar processing 

behavior with the different spreading search range. In the second class, to avoid the missing candidate 

objects, after the blocks containing objects are found, the local expansion is spread one more time 

with the increase of the value of SRadius by one. 

Take an example shown in Fig. 1 to illustrate the proposed method. A continuous nearest neighbor 

query is issued from the query line segment se. That is, the start block and the end block are blocks 13 

and 45, respectively. First, the nearest neighbors of start block s and end block e are found out by 

procedure FindNNBlocks. Second, the route containing blocks {13, 11, 31, 32, 34, 45} shown in Fig. 

1 is found out by procedure FindRoute. Third, the local expansions of the search range are processed 

by procedure LocalExpansion. The entire search range for this query is shown in Fig. 1. After the 

entire search range is examined in the first phase, we apply the heuristics mentioned in Zheng et al.’s 

method [7] to filter out the final answers from the candidate objects. The final answers are the blocks 

marked with “*” in Fig. 1. 

 

input: start point s and end point e 

output: the candidate nearest neighbors 

1: procedure FindRange(s, e) 

2:   Call procedure FindNNBlocks(s) 

3:   Call procedure FindNNBlocks(e) 

4:   Call procedure FindRoute(RQueue, s, e) 

5:   Call procedure LocalExpansion(RQueue, s, e) 

6: end procedure 

Fig. 2. Procedure FindRange 

Fig. 1. The Hilbert curve of order 3  
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Performance Evaluation 

In this section, we compare the performances of FM and Zheng et al.'s method [7]. The uniform 

data set and the real data set are used to evaluate the performance of FM and Zheng et al.'s method. 

The uniform data set contains 10,000 points uniformly generated in a square Euclidean space. The 

real data set contains 5,922 points of cities and village of Greece (http://www.rtreeportal.org). These 

spatial objects are linearly ordered to the one-dimensional space from the two-dimensional space by 

the Hilbert curve. Two parameters are used in our simulation: QLength and QAngle. QLength is the 

ratio of the query length to the total side length of the two-dimensional space, and its value is in [0.1, 

1]. QAngle is the angle relative to the x-axis of the CNN query, and its value is in [0,360). The position 

of each start point is randomly generated in the two-dimensional space. Simulation results are the 

average of 500 queries. Because the processing time is proportional to the number of fetched blocks, 

we use the processing time as the performance measure. In addition, we also make comparisons of the 

block accuracy. The block accuracy is the number of the final answers divided by the number of the 

search data blocks. 

In the first experimental result, we evaluate the block accuracy and the processing time for the 

uniform data set with different values of QAngle: 0, 15, 30, and 45. These four degrees can represent 

other fifteen multiple degrees from 0 to 360. Fig. 4-(a) and Fig. 4-(b) show the block accuracy and the 

processing time of both methods with QLength=0.5, respectively. In Fig. 4-(a), we can observe that 

although the block accuracy of FM is affected by the value of QAngle, the block accuracy of FM is 

higher than that of Zheng et al.'s method. This is because the determined search range of Zheng et al.'s 

method is larger than that of FM. In Fig. 4-(b), we can observe that the processing time of FM is 

shorter than that of Zheng et al.'s method. Since the number of the candidate objects in Zheng et al.'s 

method is larger than that in FM, Zheng et al.'s method should take more time to process them in the 

second phase.  
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 Fig. 4. Experimental results 

In the second experimental result, we evaluate the block accuracy and the processing time for the 

uniform data set with different values of QLength: 0.3, 0.5, 0.7, and 0.9. Moreover, the value of 

QAngle is set to 30. Fig. 4-(c) shows that the block accuracy of FM is higher than that of Zheng et al.’s 

method. With the increase of the value of QLength, the block accuracy of FM is slightly increasing, 

and that of Zheng et al.’s method is slightly decreasing. Fig. 4-(d) shows that the processing time of 

FM is shorter than that of Zheng et al.’s method. Moreover, the processing time of Zheng et al.’s 

method is increasing dramatically with the increase of the value of QLength, whereas that of FM is 

increasing slightly. That means FM has a stable performance on the processing time. 
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In the third experimental result, we evaluate the block accuracy and the processing time for the real 

data set with different values of QAngle: 0, 15, 30, and 45. Moreover, the value of QLength is set to 

0.3. Fig. 4-(e) shows that the block accuracy of FM is higher than that of Zheng et al.'s method. When 

the value of QAngle of the query is set to 0, the block accuracy is higher than that of other values of 

QAngle. For processing the query with QAngle=0, the size of each local search range of FM in the 

horizontal moving direction is the same. In this case, the search range is smaller as compared to the 

other cases. Therefore, this case achieves a higher accuracy than the others. On the other hand, when 

the value of QAngle of the query is not 0, the size of each local search range of FM is increased by the 

times of the spreading. Fig. 4-(f) shows the processing time of FM is shorter than that of Zheng et al.'s 

method. In the real data set, when the value of QAngle increases, the processing time of FM or Zheng 

et al.'s method decreases. The processing time of Zheng et al.'s method decreases quickly, when the 

value of QAngle increases. The reason is that the distribution of the data objects in the real data set is 

sparse, so the search range contains the smaller number of the candidate objects, which still be needed 

to be processed in the second phase. 

Conclusions 

In this paper, we have presented a forward moving method, FM, for continuous nearest neighbor 

queries. Our method uses an index, which records that which data blocks contain objects, to locally 

search the data blocks around the query line segment for the candidate objects. Therefore, we can 

determine a search range with a higher accuracy than that of Zheng et al.'s method. Experimental 

results show that FM can reduce the number of the fetched data blocks as compared to Zheng et al.'s 

method under two different data distributions, including the uniform data set and the real data set. 
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